Douglas Isbell
Headquarters, Washington, DC May 27, 1998
(Phone: 202/358-1547)
Diane Ainsworth
Jet Propulsion Laboratory, Pasadena, CA
(Phone: 818/354-5011)
Release 98-90
Surveyor Data Reveal More Evidence of Abundant Water, Thermal Activity in Mars Past
Among many results, the Thermal Emission Spectrometer instrument team, led by Dr. Philip Christensen of Arizona State University, Tempe, has discovered the first clear evidence of an ancient hydrothermal system. This finding implies that water was stable at or near the surface and that a thicker atmosphere existed in Mars' early history. Measurements from the spectrometer show a remarkable accumulation of the mineral hematite, well-crystallized grains of ferric (iron) oxide that typically originate from thermal activity and standing bodies of water. This deposit is localized near the Martian equator, in an area approximately 300 miles (500 kilometers) in diameter.
Fine-grained hematite, with tiny particles no larger than specks of dust, generally forms by the weathering of iron-bearing minerals during oxidation, or rusting, which can occur in an atmosphere at low temperatures. The material has been previously detected on Mars in more dispersed concentrations and is widely thought to be an important component of the materials that give Mars its red color. The presence of a singular deposit of hematite on Mars is intriguing, however, because it typically forms by crystal growth from hot, iron-rich fluids.